Sliding Filament Theory

Dr. R. Venkatesan M.Sc (Ex.Phy)., M.Sc (Psy)., M.P.Ed., M.Phil.,PGDY., Ph.D.

Contraction Sequence: Sliding Filament Theory

Contraction Sequence: Sliding Filament Theory

The ATPase activity of myosin hydrolyzes the ATP. ADP and Pi remain bound to myosin.

Contraction Sequence: Sliding Filament Theory

At the end of the power stroke, the myosin head releases ADP and resumes the tightly bound rigor state.

ADP

Release of P_i initiates the power stroke. The myosin head rotates on its hinge, pushing the actin filament past it.

Skeletal Muscle Contraction: Mechanism

Skeletal Muscle Contraction: Mechanism

Energy for Contraction: ATP & Phosphocreatine

- Aerobic Respiration
 - Oxygen
 - Glucose
 - Fatty acids
 - 30-32 ATPs

Anaerobic Respiration

- Fast but
- 2 ATP/glucose
- Phosphocreatine \rightarrow ATPs

Energy for Contraction: ATP & Phosphocreatine

Figure 12-13: Phosphocreatine

Muscle Fatigue: Causes not well known

- Central
 - "Feeling"
 - Lactic acid
- Peripheral
 - Glycogen depletion
 - Ca²⁺ interference
 - High P_i levels
 - ECF high K⁺
 - ACh depletion

Fiber Contraction Speed: Fast Twitch

- Rate
 - 2-3 times faster
 - SR uptake of Ca²⁺
 - ATP splitting
- Anaerobic/Fatigue easily
 - Power lifting
 - Fast/delicate
 - Sprint

Fiber Contraction Speed: Fast Twitch

Figure 12-15: Fast-twitch glycolytic and slow-twitch muscle fibers

Fiber Contraction Speed: Oxidative Fast & Slow

- Oxidative Fast Twitch
 - Intermediate speed
 - Anaerobic & aerobic
- Slow Twitch: Aerobic, less fatigue
 - More mitochondria
 - More capillaries
 - Myoglobin
 - Endurance activities
 - Postural muscles

Coordinating the Fibers: Force of Contraction

- Excitation and Twitch
- Length–Tension: more crossbridges: more tension

Coordinating the Fibers: Summation to

etanus

(a) Single twitches: Muscle relaxes completely between stimuli (▲).

(c) Summation leading to unfused tetanus: Stimuli are far enough apart to allow muscle to relax slightly between stimuli.

(b) Summation: Stimuli closer together do not allow muscle to relax fully.

(d) Summation leading to complete tetanus: Muscle reaches steady tension.

