Sliding Filament Theory

Dr. R. Venkatesan
M.Sc (Ex.Phy)., M.Sc (Psy)., M.P.Ed.,
M.Phil.,PGDY., Ph.D.

Contraction Sequence: Sliding Filament Theory

Tight binding in the rigor state. The crossbridge is at a 45° angle relative to the filaments.

Contraction Sequence: Sliding Filament Theorv

3 The ATPase activity of myosin hydrolyzes the ATP. ADP and P_{i} remain bound to myosin.

The myosin head swings over and binds weakly to a new actin molecule. The crossbridge is now at 90° relative to the filaments.

Contraction Sequence: Sliding Filament Theory

Skeletal Muscle Contraction: Mechanism

Somatic motor neuron releases ACh at neuromuscular junction.

Net entry of Na^{+} through ACh receptorchannel initiates a muscle action potential.

Skeletal Muscle Contraction: Mechanism

Energy for Contraction: ATP \& Phosphocreatine

- Aerobic Respiration
- Oxygen
- Glucose
- Fatty acids
- 30-32 ATPs
- Anaerobic Respiration
- Fast but
- 2 ATP/glucose
- Phosphocreatine \rightarrow ATPs

Energy for Contraction: ATP \& Phosphocreatine

Muscle at rest

Muscle Fatigue: Causes not well known

Central

- "Feeling"
- Lactic acid

Peripheral

- Glycogen depletion
- Ca²+ interference
- High P_{i} levels
- ECF high K^{+}
- ACh depletion

Fiber Contraction Speed: Fast Twitch

Rate

- 2-3 times faster
- SR uptake of Ca^{2+}
- ATP splitting

Anaerobic/Fatigue easily

- Power lifting
- Fast/delicate
- Sprint

Fiber Contraction Speed: Fast Twitch

\longleftarrow
Slow-twitch oxidative muscle fibers Note smaller diameter, darker color due to myoglobin. Fatigueresistant.

$$
\longleftarrow \text { Fast-twitch glycolytic } \longrightarrow
$$ muscle fibers Larger diameter, pale color. Easily fatigued.

Figure 12-15: Fast-twitch glycolytic and slow-twitch muscle fibers

Fiber Contraction Speed: Oxidative Fast \& Slow

Oxidative Fast Twitch

- Intermediate speed
- Anaerobic \& aerobic
- Slow Twitch: Aerobic, less fatigue
- More mitochondria
- More capillaries
- Myoglobin
- Endurance activities
- Postural muscles

Coordinating the Fibers: Force of Contraction

- Excitation and Twitch
- Length-Tension: more crossbridges: more tension

Coordinating the Fibers: Summation to Tetanus

(a) Single twitches: Muscle relaxes completely between stimuli ($\mathbf{\Delta}$).

(c) Summation leading to unfused tetanus: Stimuli are far enough apart to allow muscle to relax slightly between stimuli.

Time (msec)
\rightarrow
(b) Summation: Stimuli closer together do not allow muscle to relax fully.

(d) Summation leading to complete tetanus: Muscle reaches steady tension.

